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A PRIORI LP ERROR ESTIMATES 
FOR GALERKIN APPROXIMATIONS 

TO POROUS MEDIUM AND FAST DIFFUSION EQUATIONS 

DONGMING WEI AND LEW LEFTON 

ABSTRACT. Galerkin approximations to solutions of a Cauchy-Dirichlet prob- 
lem governed by the generalized porous medium equation 

0X_ 
E -(I - 

- 
) f (X, t) 

on bounded convex domains are considered. The range of the parameter p 
includes the fast diffusion case 1 < p < 2. Using an Euler finite difference 
approximation in time, the semi-discrete solution is shown to converge to the 
exact solution in L'(O,T; LP(Q)) norm with an error controlled by O(At ) 

for 1 < p < 2 and 0(ALt2P) for 2 < p < oc. For the fully discrete problem, 

a global convergence rate of 0(AIt') in L2(0, T; LP(Q)) norm is shown for 

the range N+41 < p < 2. For 2 < p < o0, a rate of O(At 2P ) is shown in 
LP (0, T; LP (Q)) norm. 

1. INTRODUCTION 

Consider the Cauchy-Dirichlet problem governed by the generalized porous 
medium equation 

au 
N / 

Up- 1 
-Et _ E p 2L)= f (x, t), (x, t) E Q x [0, T], 

at Ox_ K Oxj~~ 

(1.1) u(x, t) = 0, (x, t) EQ x [0, T], 

u(x, 0) = tto(x), x E 

where 1 < p < o0, 0 < T < oc, and Q is a bounded convex polygonal domain in RN. 

The above equation is one of the simplest and best-known nonlinear equations of 
degenerate (p > 2) or singular (p < 2) parabolic type. We refer to Kalashnikov [15] 
and the references therein for background of the basic theory and for applications 
which motivate the study of this equation. The case p > 2 is the classical porous 
medium equation. The case 1 < p < 2 is referred to as the fast diffusion equation 
and includes applications in plasma physics [1] and diffusion of impurities in silicon 
[13]. In this paper we will establish error estimates for both semi-discrete and fully 
discrete approximations to solutions of (1.1) for a range of p which includes both 
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porous medium and fast diffusion behavior. We employ a backward Euler difference 
approximation in t and a Galerkin finite element approximation in x. 

In the first of our main results we obtain error estimates for semi-discrete ap- 
proximations over the full range 1 < p < oo in the L (0, T; LP(Q)) norm. In 

particular, we establish a convergence rate of O(z\t4) for 1 < p < 2 and O(At2p) 
for 2 < p < oo. This result can be compared to work of Rulla [25]. His analysis 
covers the semi-discrete problem for the full range of p. In the fast diffusion case, 
Rulla obtains a better rate of O(At) in the space L (0, T; H-1(Q)). He also ob- 
tains the rate O(At) for the porous medium case using the norm L2(0, T; L2(Q)). 
Rulla's results apply to a general class of maximal monotone operators which can 
be written as a subgradient. Another result for the semi-discrete approximation 
to solutions of (1.1) in the fast diffusion case is obtained by Eden, Michaux, and 
Rakotoson [8, Theorem 6.1]. They establish an L (0, T; H-1(Q)) error estimate 
of O(At2 ) under the assumption that u0 E L?. We also mention a related paper 
by LeRoux [16] where she constructs approximate solutions using a semi-discrete 
scheme for a fast diffusion problem. Of interest is that her discretized solutions 
exhibit the same phenomenon known to hold for true solutions in the fast diffusion 
case, namely that there exists a finite extinction time T after which the solution is 
zero. For other related results, see Farago [10] and Garcia [11]. 

We also establish error estimates for fully discrete approximations in this work 
by using estimates of the form 

max Iui UiU2-llp < C for 2 < p < oo, 
l1<i<rnz \At P 

and 

max l < C for I < p < 2 
l<i<m At 2 

where Ui is the fully discrete approximation. In particular, let 

2N 

N N+ I' 

We show that the global convergence rate is O(At4) for p* < p < 2 and O(At ) for 
2 < p < oc. These rates are obtained by taking the spatial mesh size h = O(Ato), 

where A = p(N+2)-2N and 0 - 
p(N+2)-2N' respectively. Note that these error 

estimates are in the space L2(0, T; LP (Q)) when p* < p < 2 and LP (0, T; LP (Q)) 
when 2 < p < oo. 

Our fully discrete result compares to a recent paper by Rulla and Walkington [26] 
where the optimal rate of O (At) is proved for two-dimensional problems in the norm 
L (0, T; H-1(Q)). Rulla and Walkington also obtain L2(0, T; L2(Q)) estimates for 
the classical porous medium case 2 < p < oc. We note that in order to obtain the 
appropriate L? bounds in [26] their analysis is restricted to two dimensions. A 
fully discrete error analysis for a closely related fast diffusion problem is studied by 
Lesaint and Pousin in [17]. They consider the problem vvt-vxx = 0, which is a 
one-dimensional version of (1.1) with p -3/2 after the change of variable u = v2. 
Assuming nonzero boundary data, they obtain a -(Vt + h1/2) error estimate in 
L? (0, T; L2(Q)) norm. 

An error analysis for the case p > 2 was done by Rose [24] who worked on the 
Neumann problem for the porous medium equation. A related effort by Jerome 
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and Rose [14] considered the Stefan problem with Neumann boundary conditions. 
These results were greatly extended and improved by Nochetto, Verdi, and Elliott 
[9], [19], [20], [29], who developed a theory which covers a wide class of singular 
and degenerate problems under rather general assumptions about the initial and 
boundary data. Further references can be found in these papers. 

A key idea used in [24] to study the fully discretized porous medium equation is 
to regularize the original equation by considering the nondegenerate problem 

(1.2) 8-E 93 (gu4) ) f(x,t), 

where gE(x) = jXjp-2X outside a small neighborhood of x = 0 and gE(x) > E > 0 
near the origin. The solution uE of (1.2) is then approximated using finite differences 
in time and finite elements in space. Error estimates in terms of the regularization 
parameter 6, the time step At, and the finite element size h for the fully discrete 
problem can then be obtained. By choosing an appropriate relationship between 
these parameters, a global rate of convergence can be established in terms of At 
or h. The work of Nochetto and Verdi [19], [20] also uses a regularizing pertur- 
bation to establish a global rate of convergence in the L?(O, T; H-1(Q)) norm 
of O(At') by taking h = O(At ), E = O(At P) and assuming solutions are in 
L? (0, T; L? (Q)). In addition to the L?? (0, T; H-1 (Q)) error estimates, they derive 
a rate of O(AtP) in the L (0, T; LP(Q)) norm under the assumption that 

meas{x E Q: 0 < u(x) < 6E'} < C6, 

which is shown to be true for dim(Q) = 1 in [3]. It is important to point out that 
the analysis in [20] includes the errors induced by numerical integration. 

The regularizing approximation (1.2) is avoided in [29] where L? (0, T; H 1(Q)) 
error estimates are derived for the fully discrete approximation of a general class 
of monotone operators. Using numerical integration, Co piecewise linear finite 
elements in space, and backward differences in time, a global rate of O(At ) in the 
L??(0,T;H-1(Q)) norm is established with h = O(At). We note that this result 
assumes f - 0 and initial data u0 e L2. Verdi's analysis is clearly applicable to 
the range 2 < p < oo. Moreover, from [21] it appears that by combining the results 
of [9], [20], [29], Verdi's work can be modified to cover the fast diffusion case for 
p* < p < 2 in the L (0, T;H-1(Q)) norm with the same rate O(At ). 

This paper unifies results for finite element error estimates for solutions of (1.1) 
covering both the fast diffusion case and the porous medium case. We avoid any 
regularizing approximation; however, our work does not include numerical integra- 
tion as in [20] and [29]. We prove our results under Dirichlet boundary conditions, 
and assume that the initial function u0 satisfies au0 p-2u0 E Ho1 n LP'. In partic- 
ular, we do not assume the solution u is in L?. Our global convergence rates are 
not as strong as the optimal ones obtained in [25] and [26], but we are working in 
the space LP which has a more practical norm than H1. We also provide explicit 
proofs which extend fast diffusion results that exist only implicitly in the literature. 

The paper is organized as follows. In Section 2 we state existence, uniqueness, 
and other preliminary results. In Section 3 we derive regularity estimates and error 
estimates for the semi-discrete approximations. In Section 4 we treat the fully 
discrete problem. 



974 DONGMING WEI AND LEW LEFTON 

2. PRELIMINARIES 

Throughout this work, we assume that f: [0, T] -* L2 is Lipschitz continuous, 
i.e., there exists L > 0 such that 11f(t)-f(t') 112 < Llt-t' 1. Existence and uniqueness 
of solutions to (1.1) has been studied by many authors (see, e.g., Raviart [22], [23], 
Lions [18], Tsutsumi [28], and the references therein). In particular, it can be shown 
using the abstract theory of evolution equations governed by accretive operators 
(see, e.g., Brezis and Crandall [2], and Brezis and Friedman [3]) that if uo E L', 
then there is a unique solution to (1.1) in C( [O, T], L1). We say that a function u 
satisfies (1.1) if 

(2.1) IT <ci v + 1 (V(jUaP 2a), Vv) dtt J(f v) dt, 

for all v E LP(0,T;Ho, nLLP ), where (f,g) f ff(x)g(x) dx. 

By (2.1) and a proof similar to that in Zenisek [30, Theorem 43.3], we have 

(2.2) t v -V (V(I2V ), Vv) = (f, v), Vv E HO nLP', 

/p-i 
for almost every t in [0, T]. Henceforth, we shall use (2.2) without repeating that 
it holds for almost every t in [O, T]. 

Let d1(x) = 
jXjp-2X, where x e R1. Note that 4T-l(x) = jXjp-2X, where 

p' - --P-. The following estimates hold for all x,y-E R1; the constant C > 0 
p-i' 

is independent of x and y (for proofs, see DiBenedetto [6]). 

For 2 < P < oo, Ix-YIP < C(N(X)- NY))(X-Y), 

(2.3) I@(X) - ?NO < Clx - Y -(VXl + 1y0)P2. 

For 1 <p < 2, Ix-Y 12 < C(4t(X) -_,(Y))(X - Y)(IXI + jyj)2-P, 

(X(X) - '(y)I < Clx - ylP-. 

Throughout this paper we assume our initial data satisfies a(uo) e Ho n LP'. In 
particular, since 1 (uo) a = Iuo 1P-1, it is clear that d1(uo) E LP' if and only if uo E LP. 

Thus, if p < 2 we have uo E L2. Also, since p* < p < 2 implies 1 < 2 < 2N I we 
p-i N-2,w 

can conclude from the Sobolev imbedding that b(uo) E LP-1 and hence uo E L2 in 

this case also. Thus, our assumption on initial data implies uo e LP n L2 provided 
p* < p < o0. 

We use capital C's for generic positive constants and the standard LP norms are 

denoted by 11 II. We use 11 11-1 to denote the norm in H-1, the dual space of Ho. 
All integrals and function spaces will be over the domain Q unless otherwise noted. 

We use a dot to denote the time derivative, e.g., u =dt . For 4' E HO and g E 

we can write the duality pairing (g, 0/) H-1 = (V(-A)-1g, V9b). In light of this, we 

henceforth simplify our notation by writing (g, ') H-1 as (g, 4'). The appropriate 

inner product will be clear from context. 
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3. ERROR ESTIMATES FOR THE SEMI-DISCRETE APPROXIMATION 

Let {tj}7Lo be a partition of the interval [0,T], i.e., 0 = to < ti < t2 < <. 

t, = T and A\ti = ti - ti for i = 1, ... rn. We denote the mesh of this partition 
by At = Inaxl<i<m Ati. We construct a sequence {ui}=o by solving the following 
recurrence nonlinear elliptic problem. Given uj_1, find ui such that 

(3.1) ( /t ,v) + 1- (V(Iu,l 1,2ti), VV) = yf, V), lVV E HIl n LP 

where uo uo(x), fi f(x,ti), i = I . 
We first show that solutions ui exist for (3.1). Consider the following auxiliary 

recurrence problem obtained from (3.1) by writing v. = -d(ua). Given vi-1, find vi 
such that 

(3.2) ( I / vi - ! Vi-i + \ 1 (Vvj, Vv) = (fi, v), 
p 

for v E H( n LP', where i = 1, ... m, and vo = (uo). The operator defined by 

V -+ |VIp-2V- Kv, where K > 0, 

is bounded, hemnicontinuous, strictly monotone and coercive from Ho' nLP' to H-1 + 
LP, which is the dual space of Ho n LP' [22]. Therefore, a unique sequence {vi}7 1 
in HB n LP can be generated from (3.2) and the standard theory of monotone 
operators (see Browder [4]) with the assumption that vo = D(uo) c Ho n LP'. Now 
since ui = -1(vi) for i =1,... , m, we conclude that the sequence {ui}il1 satisfies 
(3.1). Note that v C LP' if and only if u = D-'(v) c LP. The semi-discrete solution 
of (1.1) is defined, for a given partition {t,} Im1, by linear interpolation in LP, that 
is 

(3.3) Uar,(t) 
- t i ii + tt Uji, for ti-I < t < ti, i 1,... ,m, 

(3.4) 2M (0) = uo. 

We observe ua? (t) = (t ti) (ui - u() and 

d'Um(t) = lii t- Uj,~ for ti < t < t, i 1,...,m. 

Definition 3.1. We say that a partition 0 = to < t, < t2 < ... < t, T with 
A\ti = ti-ti is nonincreasing if it satisfies A\ti < A ti-I for i = 2,..., m. 

Lemma 3.1. Suppose that 1 < p < cxo and the partition {t2}7L0 is a nonincreasing 

partition of [0, T] as defined above. Let (T(uo) c Ho' n LP'. Suppose {aui}im1 is the 
sequence generated by (3.1) and let u277(t) be the corresponding semi-discrete solution 
defined by (3.3), (3.4). Then there exists a positive constant C C(Q, p, f, uo), 
independent of {ti}zm0, such that 

max aluIl < C', 
1 i< i i _ 

max 
jV4(Ui)jj2 ?_ C 

and 

a dum, (t) < C 
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Proof. Fix 1 < i < m and let v = vi in (3.2). We have 

(35) tViVi/ + 1 (Vvi,Vvi)=(fi,vi) 

Using (3.5) and the following inequality (see [22]), 

-(lvillp/ - IIvi-i IIp) (v P-2v - V, Vi) 

we get 

it: (llvillp, v- llvi_l,)2+ p' Vv2< p(fi, vi). 

We have, for any E > 0, I (fi, vi) I < I1 f,i || 2 + E 
1|Vv || 2 ; therefore, 

(3.6) llviilp/ - iivi llp/ + P - 2 ) 2 

In (3.6), using the Sobolev inequality I fiII-1 < C Ifi H2 and summing, we get 

(3.7) lvillp/ + P' - 2 ) VvS 2 2 2e E \ + VOI P,. 

By choosing 0 < E < p21 in (3.7), we find that both terms on the left are nonnega- 

tive; thus, 11vi||po < C(f,vo) and Iis=, Z\t, vVs112 < C(f, vo). The first inequality 
in Lemma 3.1 follows since llvflpl = flull. 

Letting v = vi-vi-1 in (3.2) for i =1,.. , m and using (2.3) and (2.4), we have 

0 < (IviIp -2Vi -Vi_p -2Vi_I)(Vi -Vi_) 

Therefore, 

- (Vvj, Vvj - Vvi_ ) < (fi, vi -vi_), 

which gives 

II]VV112 
_ 

IIVV,_11122 - 2 (p - 1) ((fi, vi) - (fi 1, vi- 1)) < 2 (p- 1) (fi- I - fi, vi I). 

Summing this inequality from 1 to i and using the Lipschitz continuity of f we get 

IIVv,112 _- Vv0 112-2(p-1)((fi, vi)-(fo, vo)) < 2(p-1)L E Z Ats I vsIl 112, 

s=l 

which implies 

(3.8) IIVvi?I2 < C I IVvi 112 + C2 At, IIv v +C3, 
s=l1 
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where Cl, C2, and C3 depend only on p, f and vo. Since At, < At,-, for s > 2 
and Es>l Z\tsIVvVSI12 < C(f, vo) we have 

i i 

E3 At~s~i llvS_2 < Atl 11VO 12 + E Ats-l IIVs_l 112 

s=1 s=2 

_< O(f IVO) 

and we deduce from (3.8) that 

(3.9) IVVi 112 < Cl IIVvi 112 + C2 

From (3.9) we conclude that there exists a positive constant C(f, vo) such that 
IIVviI 2 < C(f, vo). Thus IIV4(ui) 12 < C(f, vo) which gives the second inequality 
in Lemma 3.1. 

To prove the third inequality, we use (3.1) and write 

(Uiti v) < - 1 (V(I p-2U,),V), 
Vv EH+O Lf . 

K zti / p -iV EH 

Again using that Ilf fi I ? - I < C I fi ll 2 we estimate 

(3.10) Ki tUi-i, v < I ____Vv112+CIfiII2)llVI12 

The third inequality now follows from (3.10) since IIVvi2 2 and PIfi I2 are both 
bounded. El 

We suspect our hypothesis that the partition of [0, T] be nonincreasing is only an 
artifact of our method of proof and could perhaps be relaxed to include arbitrary 
partitions. However, we have not found a way to estimate (3.8) without this as- 
sumption. Note that many related results (e.g., Verdi [24]) assume a uniform mesh 
which is clearly nondecreasing. 

Using the above H- 1 estimate on dud(t) we can write H|ui-ui- u | 1 ?i C/<t. dt 
Let 1 < I <Tn and sum from i = 1,...I to conclude IluliKi- aluo l_- < CT. We 
conclude 

(3.11) IIuM(t) |-1 < C, 

where C is independent of /At. 

Theorem 3.1. Let u be the exact solution of (1.1) with initial data satisfying 
(uo) c Hoj 0 L. And let um(t) be the semi-discrete solution defined by (3.3), 

(3.4). Then 

Ilu(t) - um(t) 1i< C/At12 for 1 < p < 00. 

Proof. Let fti }Im0 and fti }j,_ be two partitions of the interval [0, T]. Let um (t) 
and um/ (t) be the semi-discrete solutions defined by (3.3) and (3.4) corresponding 
to the partitions, respectively. For each g C HS, s > -1, let Tg denote the unique 
solution u of -/u = g in Ho. Then JTgll 2 < C11g9 2 (see, e.g., Gilbarg and 
Trudinger [12]). 
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Let em,m'(t) = um(t) - umi(t), and define pm,m'(t) C Ho by -/pm,m'(t) 
em,m,(t). Then by (3.1) we have, for t C (ti-1,ti] n (ti - ,ti], 

2 t|Vmm t 12=(d VPmm' 2t)iif VPm,mI t Ild (t) 2 ( d (t)), VPm,m' (t) ) 

(fi-2fia, Temr m(t)) 

(- (p ( t)) -i P(ui'),em,m' (t)) 

Using (3.11), the Lipschitz continuity of f, and the fact that -/\w =?m,m' implies 
Vw l2 < |ern,rn 1-1 IVw l2, we have 

- 1fi2 Temdm(t))d ? fi - fji -1 VTem,m (t) 2 

(3.13) < C|| fi -fiT m 2 ||m,m(t) |1 

< LC ti-ti1 

Now, since (3(1i) -t (uit), ci-uity) o 0, we derive from (3.12) and (3.13) that 

14 VpmW,m(t)I ? LC< ti-i m 

(3. 14) dt1 
+ - |(Nu(2i) -@ (Ui/),v m (t) -AL + Uii U /(t 

We also have 

I (fi )-@ fi ), Tmm (t)I < II fi -fil-I Tmm/ (t) - 2 

(3.15) ? V(f(ii) - 1(u1m)) 2 

x(___ zxt Illui-u-<LC+ti till. 

Therefore, by (3.14), (3.15) and Lemma 3.1, we get 

Ild2 

2t Vpm,m(t) I ? C< |ti-t + C2 ttii-tl < C(z\t. + ) 

which implies that 

(3.16) VPm,mt (t) | ? C(/\t + /\t')- 

Since-/\pm,m' (t) = em,m'(t),+ we have ui mm' (t) -1l < || Vpmm/ (t) u 2 There- 
fore, by (3.16), we have 

(3.17) ?lm,m' (t)||_1 ? C(/\t + /\t'). 

FIom (3.17) we see that for 1 < p < oo, {um(t)}? is Cauchy in C(0, T; H1) and 
um(t) -* u(t) for some u(t) in C(0,T;Hu1) as m - oo. This u(t) is the unique 
solution of the Cauchy-Dirichlet problem. Taking the limit as /\t' - 0 (and hence 

-c oh ) in (3.17) gives the estimates of Theorem 3.1. ta 
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Lemma 3.2. Let u be the exact solution (1.1) with initial data satisfying ?T(uo) C 

Ho' n LP'. Let u,, (t) be the piecewise constant approximation (in time) defined by 

Um (t) = Ut, for ti- < ti, i 1,. . ., m, U,(0) = Uo. 

Then 

Iu(t) - Vnj(t) Ilp < CA\t2 for 2 < p < oo, 

Ilu(t) - Um(t)IIp < C/\t4, for 1 < p < 2. 

Proof. Let em,m/(t) = um(t) - utt,/(t) and Temnim'(t) = Ui-ui/ for t c (t i1,ti] n 
(t._1, t2']. In this interval we have 

em,m' (t) - em,mi (t) |- 

< tj \ti (Ui - tU&i) -1 + t 
( t(ui' - uit-l) - 

=it d - ti dm (t) + ti i du,,, (t) 
dt -1dt - 

Combining the above inequality with Lemma 3.1 gives 

(3.18) emn,m'(t) - ern,mn/(t) I-1 < CliAti + C2/Ati2. 

Using -Apm,m/ (t) = em,?m/ (t) and (2.3), we have for 2 < p < oo 

I en,m.' P dx < C( mn',4 (ui) -(ui/)) 

(em ml + em-,m - em,m/ ' @T(ui) - (D ui/))) 

(3.19) = (Vpn, ,m' (t), V ((T (ui) -AD (ui/ ))) 
+ (en,m' - Cm,mn', (tt ) - ui (i')) 

? ( Vpm,m/ (t) 2 + mLnm,m' -?mm' |-) 

x lV(I(ti) - T(ty)) 2 

By Lemma 3.1 we have IIV(((uj) - 1(ui/))II2 < C. Therefore, by (3.16), (3.18) and 
(3.19), we have for small At, /\t' 

1 ri,rn'(t) 112 < C(A\t, + A\ti,/)P 

A similar situation holds for 1 < p < 2. By taking P roots in (2.4) and using 
Holder's inequality and Lemma 3.1 we have 

(32e0) m'M(t) llp c [/(T(tti) - D(ttui'))(ttu -ui')j ( Ui P + lilp) 2 

(3.20) 

< c [X@ Di,@(U7 ,, lui - uV , 
Therefore, by (3.17), (3.18) and Lemma 3.1, we have for small /\t and /\t' 

| m,'(t) |1 
2 < C ((D (Ui ) -? (U,/ ), U, Ui/ ) 

? C||em,rn', -em,mi + em,m' -1 

? C(\t + /t') 2. 
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Now we may use the same argument at the end of Theorem 3.1 to prove the result. 

Lemma 3.3. Let f{ui}?7 be the sequence generated by (3.1). Then there exists a 
positive constant C = C(Q, p, f, uo) independent of f ti }j% such that 

max lu'-t- l<C for 2 <p < oo, 

and 

max ilui Ui-1,P? < C for 1 < p < 2. 

Proof. Fix 1 < i < m. Taking v = b (uj) - (t-1) in (3.1) we write 

( Ui 
)l b(ui) _ 

-O(uii-)) 

(3.21) + (V(TQ), V(U(.t)- 
p-1 

(fi, "(ui) -(ui - )). 

Subtracting pl1 (VT(ui-1), VT(u )-VT(ui 1)) from both sides of (3.21) and using 
standard estimates gives 

< Ati p i T{2) - T&,ul)) + -VTi) 2(ui) 

(3.22) < (C pfiI2 + 1 IV"(ui 1) 112) V("DUi)- VT(ui 1)112 

- 2 (Ci fi|I2 + v1 ,(D i2) 2) 22 |V(ut)- V(u-1)l 2 

Choose 0 < E < 2 and subtract the last term in (3.22) from both sides to get 

(Ui QUi- 2 - 

(3.23) + 
p 2) 1 VT2(u )-2V(ui_) 

< 2 C\fil2+ 1 +12 

By (3.23) and Lemma 3.1 we have 

(Ui U- 1 S 1l -Ui- i-1 < C. 

Using the estimates of (2.3) and (2.4) and arguing as in (3.20) for the case 1 < p < 2 
we have 

_|i-t- 'IP 
< 

U-i-,bu2i) -q(Ui_) for 2 < p < oo, 

and 

|| 2l-Ui-1|p< <U2 21 ,T(u_)(N for 1 < p < 2. 
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The conclusion follows by taking appropriate roots and using the fact that 
Ati < /\t. El 

Theorem 3.2. Let u be the exact solution of (1.1) with initial data satisfying 

D(uo) C Ho1 n LP'. And let um(t) be the semi-discrete solution defined by (3.3), 
(3.4). Then 

Ilu(t) - um(t)llp < CA\t2 for 2 < p < oo, 

and 

U(t) - Um(t) ip < C/\t4 for I < p < 2. 

Proof. For t C (ti_1, t1] we have 

||u(t) 
- 

Um(t) I p u(t) 
- 

un(t) Ip + IIUm(t) 
- 

UWn(t)I p 

=||U(t) -Ujn(t)pt+ -t (Uit-Ui-1) 
Atj ~~~~p 

u(t) -Um(t)|lp + lut -tui-l|p. 

The conclusion follows for small /\t by applying Lemma 3.2 and Lemma 3.3 to the 
above inequality. El 

4. ERROR ESTIMATES FOR THE FULLY DISCRETE APPROXIMATION 

Let Th be a simplicial subdivision of Q with maximum mesh size h 
maxKGT-I diam(K). In this discretization, K denotes-an N-simplex, diam(K) de- 
notes the diameter of K, and PK denotes the radius of the largest closed ball 
contained in K. We assume that Th is regular, i.e., there exists a constant -y inde- 
pendent of h such that 

diam(K) 
mnax <'y. 
KeTh PK 

Let Soh be the standard Co finite element space in Ho' consisting of piecewise poly- 
nomials of degree r in Q. Thus, Vv C Soh and VK C 'Th,V K c 7fPJ, where P< 
denotes the set of r degree polynomials in N variables (see Ciarlet [5] for further 
details). 

Let H be the interpolation operator defined by Scott and Zhang [27, p. 486] which 
is associated with Sh. This operator differs from standard Lagrange interpolation by 
using local averaging to generate nodal values for functions in Sobolev spaces which 
may not be pointwise well defined. We will need an estimate of the interpolation 
error in Sobolev norms. Toward this end, let v C WeP(Q), where f > I and p > 1. 

p 
Suppose further that 1 < q < +oo, 0 < m < < r + 1, and there is a constant a 
satisfying 

1 1 ?-m 
(4.1) 0 < < + 

Then we claim 

(4.2) ||V - HIVWrni,(Q) < Chm+N(q p ) ICw&Pe(Q)- 

This estimate is a slightly generalized version of that proved in [27, p. 490] where 
it is proved for the case p = q. In Lemma 4.1 we will use (4.2) in the case f = 2, 
m = 1, and q = 2. In this setting, our assumption p* < p implies (4.1). We will 
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only sketch the proof of (4.2). The interested reader is referred to [27] and [7] for 
further details. 

Let K C Th and write 

(4 3) |v - IIVIIWq(K) < Cv - PIIWmq(K) + III (-V)IWmq(K)) 

for any pC cp\. This uses the fact (see [27]) that H is a projection on SO. To 
estimate the first term in (4.3) we will use 

(4.4) inf ||v - P|| IW q(K) < Ch? q ()pIVWe,p(SK), 

where SK = int(U{Ki-Ki n K X 0, K2 C Th}). The estimate in (4.4) follows from 
Dupont and Scott [7, Theorem 3.2j. Although the explicit power of h shown in 
(4.4) is not givell in [7], it can be computed in the case when (4.1) holds. The 
second term in (4.3) is bounded by using [27, Theorem 3.1] and (4.4) to get 

|(P~ - V) II Wniq(K) < Ch ( ) 
- q p 

The estimate in (4.2) now follows by taking infp,pN on both sides of (4.3) and 
summing for each K c 7l, as done in [27, p. 490]. 

For simplicity, from this point on we will assume linear interpolating functions 
and henceforth r = 1. Let s > -1 and define T: HS - Ho by Tg = u, where 
u c Ho is the unique solution of -Au = g. Thus, T (-A)-1. Similarly, we 
define Th: H`1 - Sh such that u = Thg denotes the finite element solution of 
-/\u = g in SO. Since IIVTg l = (g,tu), and VThgJ12 = (g,Thg), we have 

(4.5) 1VTgII2 < ||gl|-l and ||VThg|2?< 11g|1-1 

for g C H8 for s > -1. We recall the following standard L2 error estimates [5] in 
the case s = 0 

(4.6) JITg - Th9g12 < Ch2, 

(. VTg - VThg 2 < Ch. 

The constant C depends on 1lgfl2. The elliptic projection operator P: Ho' -* SOh is 
defined by P = ThT-1. Thus, Tg = u implies Thg = Pu for any g C Hs. 

We will also need the following LP' version of the Aubin-Nitsche Lemma for the 
case s=-1. 

Lemma 4.1. Let p* < p < +oo and suppose u C Ho. Let -/u = g c H-1. Then 

flu - Pullp, < C(Q, llgll-,p, -y)h 2p 

Proof. We begin with Iu - PuIp, = supfcLp (U-Pujf). Rewrite f = -/Tf, inte- lif lip 
grate by parts, and use the definition of elliptic projection to obtain 

(u-Pu, f) = (Vu-VPu, VTf-V ) for all b C SOh. 

Thus, using (4.5) we have 

u- PullpK< ?lVu - VPul2sup IIVTf - VV112 

(4.7) 
f 

eLP 
lf li 

? C(Q,g 1-i) SUp I1VTf -Vb112 

where fb c Soh is arbitrary. 



POROUS MEDIUM AND FAST DIFFUSION EQUATIONS 983 

From standard regularity theory [12] we have if f c LO, then Tf c VV2 nT o P 
and 

(4.8) ITf IIW2,p < C lf 11pI 

Combining (4.8) with the interpolation error estimate (4.2) in the case f = 2, 
m= 1, and q = 2, we obtain 

II VTf-VHT f 11 2 <ChN(P2)+1. 

Writing,0 = HTf in (4.7) then gives the result. El 

Suppose we have a nonincreasing partition 0 = to < ti < t2 < ... < tm- T 
with \ti = ti - [i-I. Recall b(uo ) C Ho' n LP'. Define Uo = D-1i(P<( uo)) and let 
{Ui} im be the sequence in So" defined by 

(4 9) KUi A V) + 1 (V( Uj p2Ui), VV) =(f,V), VV E SO. 
p- 

The solutions Ui exist by the same argument used to show existence of solutions to 
(3.1). The fully discrete solution is defined by 

(4.10) U2, (t) - Ut ui + t. tUj, for ti-I < t < t2, i = 1,.. .,m, At. ~ Ati 
(4.11) Um(0) = Uo. 

Lemma 4.2. Suppose 1 < p < oo and the partition {ti}lm=o is a nonincreasing 
partition. Let {U1}ImL1 be the sequence generated by (4.9) and U,,,(t) be the corre- 
sponding fully discrete solution defined by (4.10) and (4.11). Then there exists a 
positive constant C C(Q, p, f, uo) independent of {tz}iU0 such that 

max 1lUillP < C, 
1< i, <__- 

max Vd)(U) 112 < C, 

and 

mx dUm (t) <C 
O<t<T dt - - 

Lemma 4.3. Let {Ui},I1 be the sequence generated by (4.9). Then there exists a 
positive constant C = C(Q, p, f, uo) independent of {ti} =% such th.at 

max IlUi- Ui1-lIP < C for 2 < p < oo, 
1l1i<m /\ P 

and 

max II Ui-Ui-i 
I?P <C for -<p<2. I <iz <m1. At2 

The proofs of Lemma 4.2 and Lemma 4.3 are almost identical to those of Lemma 
3.1 and Lemma 3.3, respectively, so we omit the details. We now state and prove 
our main error estimate in LP norm for the fully discrete case. 

Theorem 4.1. Let u be the exact solution of the Cauchy-Dirichlet problem (1.1). 
Let Urn(t), defined by (4.10) and (4.11), be the fully discrete solution of the problem 
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with a nonincreasing partition of [0, T]. Suppose initial data uo satisfies 1?(uo) E 

Ho n LP'. Then 
T 

lu(t) - Um(t) Pdt < ClAt + C2hp 1(( 2pC)+1)+ C3h for 2 < p < oo 
o~~~~~~ 

and 

j/ u(t) -Um(t)Ilp dt < C1z\t 2 + C2hN(P 2p) + Ch forp* <p< 2, 

where the constants Ci, C2, and C3 depend only on Q, T, uo, p, -y, and f . 

Proof. Let u(t) be the exact solution of (1.1) in the sense of (2.1) and um(t) be the 
semi-discrete solution defined by (3.3) and (3.4). Then for 2 < p < oo we have, by 
convexity of f (x) x I P, 

rT T rT 

(4.12) J lu(t) - Un(t) IP dt < CJ Iu(t) - um(t) IpP dt + C J em(t)llP dt, 

where em(t) = Unt(t) - Um(t). For p* < p < 2 we consider 

(4.13) 1 |U(t) -Um(t)112 dt < C 1 |u(t) -Um(t)||2 dt + C j er(t)K1pdt. 

By Theorem 3.2, the first term in both (4.12) and (4.13) is O(Atl). To estimate 
the second term, we observe from H6lder's inequality 

dt ilem(t)llpP < p1lem(t)llp-1 l6em(t)llp; dt 

therefore, 

(4. 1 4)e m (dtlem(t) IIP < lm(t)jlp 

Integrating (4.14) from tji_ to t where i = 1,... , m, we obtain 
t 

lIeB2(t)lip <_ ?em (ti-1) Ip +1 J m(T) IlP dr for tjI_ < t < ti 

By Lemma 3.3 and Lemma 4.3 we have for 2 < p < oo that m(t)Olp < C(At) P' 
and hence 

flem(t)flP < Cllem(tj)jllP + O(At). 

Similarly for p* < p < 2 we obtain 

||em(t)112 < Cllem(ti_i)112 + O(At). 

It remains to estimate fT em(tii) p dt and f em(tii) 11 dt for 2 < p < oo and 

p* < p < 2, respectively. 
For i = 0,... In, let Wi = d-41(Pvi) where vi = -D(ui), and u2 is defined by 

(3.1). Then by the definition of P 

(4.15) (A/\,(Wi), V) = (A/\,(ui), V), VV E SOl 

For 2 < p < oo we write 

rT ? T WT 

/ |e1n'Jtj_j)llP dt i /|ui_-I-Wi-I ||P dt + C |IlWi_-I-Ui-l IIP dt 
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and for p* < p < 2 we write 
T T rT 

, flemZ(tii) l2dt < c Ui_i _- TV_11 >dt+cj 7W i_ - Ui pdt. 

We begin by estimating the integrand of the first term in each of these expres- 
sions. For 2 < p < oo we have, by (2.3), 

ui_l-/I-l lp C(Ilti_Il p-2U._, _ Wi'_lIp-2"/-, 
, ilalil 

=4C(v1_- - 1uI - V11,T/- 

Cllvi-1 - Pvi- ,'u1 - 1IP 

We conclude 

Ui1 - IVi_Ip-1 < CIPvi-i - V.i 1P for i n1,. .. , r. 

FRom Lemma 3.1 we observe that v.-1 E Ho; therefore, -Avj_1 E H-1. Apply the 

estimate from Lemma 4.1 and use p > 2 to get llPvi_-vj1 iy ? ChN('2p ?l. 

Thus 

(4.16) liul- Vi-jIP < ChP? ( for i 1,... ,rn. 

For p* < p < 2 we take 2P roots in (2.4), integrate, and use Holder's inequality 2 
with 13 21p and 13' = to obtain 2-p ~~~p 

p + IV17 ~ ~~p (2-, 

- ?Wi P< C(v&i - PV21i - ll u- + v_||I 2 

Thus, 

< ClIvi-i  -1PV(- IIi/iI_ +1-TT I Illp)2P 

We now establish a uniform bound for 11 XIlp independent of i. By Lemma 3.1 
vi_I E Ho. Since P: Ho - So" C Ho we conclude that -D(Wi_1) = Pvi1 e Ho. 

By the Sobolev imbedding for N > 3 we have 

(4.18) IIWIlp < IIVW112 for l < p <N 2 and w E Ho. 

In the case that N = 1 or 2, we note that (4.18) holds for any 1 < p < oc. When 
p* < p < oc we have 1 < p' < N-2I and we conclude |lWi_llp = ii<>(Wi_d)lp, < 

C V'I(W i_I) 2. By taking V = -D(Wi) in (4.15) and using Lemma 3.1 we conclude 

(4.19) max IW i p C. 

Thus by (4.17), (4.19), Lemma 3.1 and using (4.18) to estimate lvi1 - Pvi- lip,/ 
we obtain 

lui_l - Wi_lllp < CllV _ - Pvi- 11p,. 

Therefore, by Lemma. 4.1 

(4.20) 11u < ChVVf 22 

Toward estimating jo 1 14 - 1-Ui -1 P dt and T dt, we observe 
that by (2.3), (2.4), Lemma 4.2, and (4.19) we have 

(I I 47 - (I i I P < C (,(VllX) - D(Uj), Vi - U), for 2 < p < oo, and 

(4.21)*- U~fl~ ? CQW) _ - F(U,), W4r, _ U,), for p_ < p < 2. 
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Thus, it suffices to estimate fT(,,(U7) - D(Uj), WT - Ui4 dt, which we do as follows. 
Let pmn(t) = Tem(t). Then, for ti-I < t < ti, we have 

(V3m (t), V pn(t)) A-Aj3Bm,(t), P r(t)) 

(4.22) =(en (t), T(um, (t) - WVV + Ui - U (t))) 

+ (e<j(t), [T - Thl(Wi - UI)) 

+ (6em (t),T1 (Wi - UI1)) 

Subtracting (4.9) from (3.1) we have 

(4.23 /d7 t Uf() + 1 
dt dt ) V) + 

I(V ((ui) - V((Ui), VV) = 0, VV E So. 

By (4.15), (4.23), integration by parts, and the fact that -A H: Ho H-1 is an 
isomnetry we get 

(4.24) K t jt) V) + p 1 ((WI) - d(UI), -AV) = 0, VV E S 

In (4.24), let V = Th(Wi - UJ). Then, we have 

K~(t) ITil(I47i - LJi)) 
(ele7~~~~~~, (t),, (- A) /7'(-VU- )) 

(4.25) = - 1 (<(I) - F(Ui), (-A)T17jWi - UJ)) 

=- , (<>WI) - -D(Uj), 7, - Uj + (-/\) [Th -T] (Wi - U)). 
p - 1 

By (4.22) and (4.25) we have 

(4.26) p 1 ( Vi)-WI), W-UZ) Vpm(t)- <2 -+II+I, p- 2 dt 

where 

I = (l177(t), T(uma(t) - Wi + Ui -Un()), 

II = (m, (t), [T - Th] (Wi-VU-)) 

and 

III = (@,D(Wi) - -D(Ui), (-A) [T/7,- T](Wi - U)). 
p - 1 

First we obtain a bound for I. By Lemma 3.1 and Lemma 4.2, we have 

em(t)JI_1 < C. Therefore, using (4.6) we have, 

1II < I Ie.7,m(t) I I - II VT(um,,,, (t) - Wi + Ul, - U7(t))|| 2 

< 6nJ(t)ll-1 Um,(t) - Wi + Ui - Urn(t)||-1 

< C(ultm7(t) - WJill- + liUi - UnJ(t)l-i) 

(4.27) <C (At u Iui 1 + lu - Will-I +At ui -u ' ) 
At. ~~~~~~~Ati 
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To estimate flui - Will- we recall that for p* < p < oo we have Ho' C LP'; hence, 
LP c H-1. By (4.16) and (4.20) we have 

(4.28) Wi- uill1i < lWi - uillp < Chp 1(N( 2p)) for 2 < p < oo, 
1Wi -uill_1 < |Wi -uillp < Ch 2p for p* < p < 2. 

FRom (4.27) and (4.28) we conclude 

(4.29) II < CiAt + C2hp-1 (N(P2p)?l) 
for 2 < p < oo, and 

1I- < C,At + C2hN( 2p)?l for p* < p < 2. 

An estimate for II can be established using Lemma 3.1, Lemma 4.1, and the 
second inequality in (4.5) as follows: 

III < 116m(t) |1 ||V[T-Th1 (Wi-Ui) 112 

(4.30) < CI V[T - Th](Wi - Ui) 112 

< Ch. 

As noted in the remark following (4.5), the constant in (4.30) depends on 
IWi -UilL2. We claim Ui and Wi are bounded in L2 = Ho independent of i. 
First consider 2 < p. By Lemma 4.2, Ui E LP c L2 = HO. Moreover, we note that 

lWi?I2 <2 C + IlWi - UiK2 <? CIlWi - u7-u2 + IuUi - Uill2, 

which is bounded by (4.16), Lemma 3.1, and Lemma 4.2. Similarly, p* < p < 2 
implies 1 < p21 < N2 . Using the Sobolev imbedding (4.18) we conclude (D(Wj) E 

222 LP-1 and hence Wi4 E L2. The same argument shows Ui E L2. In both cases we 
have Wi - Ui 11 2 bounded. 

We can estimate the third term on the right hand side of (4.26) in a similar 
manner. Observe using Lemma 3.1, Lemma 4.2, and (4.15) with V = FD(Wf) that 

III < C IIV(4(Vi) -D(Ui))|2| V[Th -T](V -Ui)112 

(4.31) < CIIV[Th-T](Wi-Ui) 112 

< Ch. 

Combining (4.29), (4.30), (4.31), (4.26), and assuming 0 < h < 1, we have for 
2<p<oo 

1 ( (.Wi) - ( Ui ), Wi- UiJ) + 2- Vpm(t)fl2 
(4.32) p - 2 dt 

? C/At + C2hp?1(N(P2p)?1) + C3h, 

and for p* < p < 2 

F(VVWi) - bF(Ui),VV - Ui) + dt lVPm(t)112 
(4.33) p- 2 dt 

< C,At + C2hN( 2p)?l + C3h. 

Using (4.5) we have IIVPm(0)l12 < llem(0)II1 = luo - Uolli =uo - WollKi < 

fluo - Wollp, which is controlled by (4.16) or (4.20). Therefore, integrating (4.32) 
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and (4.33) over [ti1, ti] and summing on i gives the following: for 2 < p < oc, 

t i 1 

(4.34) X p 1 ((VVI) - I (Ui), wi - Ui) dt + Vpn77(t)l 2 

(4.34) i= _ P-1 

< ClAt + C2hp1(N( ) + C3h; 

and for p* < p < 2, 
r ti 

(4.35) _ 7 (@( -I) - b(Ui), UWi ) dt 
(4 35) i= ilp- 

<CiAt + C2h 2 ) + C3h. 

Combining (4.21) with (4.34) and (4.35) gives 

j VK-U P - CiAt+C2hp?1(N(P )+1) +C3h for 2 < p < o 

and 
rT 

147 | -Ufl2 < ClAt + C2hN( 2p )l + C3h for p* < p < 2. 

This completes our estimates for f0T Ten(ti) dt and < em(tii) 2 dt. Thus, 
we have established Theorem 4.1. 

Iu 
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